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«РЕФЕРАТ» 

Отчет состоит из 42 стр., 16 рисунков, 16 источников. 

МЕХАНИЗМ; СТРУКТУРА МЕХАНИЗМА ТРЕТЬЕГО КЛАССА; 

ЗВЕНО; ГРУПП АССУРА; ГРУППА БУРМЕСТЕРА КИНЕМАТИЧЕСКИЕ 

ПАРАМЕТРЫ. ВАРИАТОР,  РЫЧАЖНЫЙ МЕХАНИЗМ, СТРУКТУРНЫЙ 

АНАЛИЗ, КИНЕМАТИЧЕСКАЯ ПАРА, ПЕРЕДАТОЧНОЕ ЧИСЛО, 

СТРУКТУРНАЯ СХЕМА. 

Объектами исследования является система плоских механизмов. 

Основной целью проведенных работ является разработка методика 

расчета механизмов  

Задачей исследований является улучшения методики определения 

кинематических параметров механизмов. 

Работа состоит из введения, из трех глав и заключения.  

В первом главе предложена новая методика определения кинематических 

параметров рычажных механизмов, с использованием теоремы Пифагора, 

которая приведена на примере определения положений звеньев самого 

сложного механизма третьего класса, разработанного наслаиванием группы 

Бурместера начальному механизму.  

Во втором главе предложена новая методика определения 

кинематических параметров кривошипно-ползунных механизмов, с 

использованием теоремы Пифагора. По существующей известной 

классической методике ТММ, для определения кинематических параметров 

отдельной точки звеньев, например, на шатуне требуется предварительно 

определить углы качания и угловой скорости шатуна, что усложняет решение 

задачи.  

В третьей главе описаны схема и принцип работы рычажного вариатора с 

пространственными преобразующими механизмами. В результате 

структурного анализа, определено семейство исследуемого вариатора, 

показано, что применение сферических кинематических пар оказывается 

предпочтительнее для надежности работы устройства. 
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ВВЕДЕНИЕ 

В настоящее время известны разнообразные типы вариаторов скоростей 

(фрикционные, тороидные, ременные, шаровые и т.д.) [1 – 4], главным 

недостатком которых является использование фрикционной передачи для 

передачи движения от ведущего колеса к ведомому. Это обстоятельство не 

позволяет получить точного передаточного отношения из-за 

проскальзывания, требует дополнительных устройств для прижатия колес, что 

приводит к повышению нагрузок на валы и подшипники. 

Для избежания вышеуказанных недостатков применяются различные 

типы импульсных вариаторов [5]. В импульсных вариаторах вращательное 

движение ведущего вала (кривошипа) преобразуется в колебательное 

движение, которое с помощью механизмов свободного хода (МСХ) вновь 

трансформируется во вращательное движение ведомого вала. В указанных 

вариаторах в качестве преобразующего механизма используются рычажные, 

зубчато-рычажные и кулачковые механизмы, а передаточные отношения 

изменяются посредством изменения радиуса (длины) вращения кривошипа 

или длины качания коромысла [5]. В импульсных вариаторах движение 

передается  в виде периодических импульсов, чтобы получить непрерывное 

вращение ведомого вала и уменьшить неравномерность его вращения, 

устанавливают несколько последовательно работающих преобразующих 

механизмов и МСХ, причем эти механизмы устанавливаются через равные 

промежутки. Необходимость регулирования длины вращающегося кривошипа 

или коромысла усложняет конструкцию импульсного вариатора. 



Для плавного регулирования передаточного отношения в широком 

диапазоне используется вариатор с рычажными механизмами [6-7], вращение 

ведущего кривошипа преобразуется в непрерывное вращательное движение 

шестерен. Бесступечатое регулирование передаточного отношения 

осуществляется путем изменения радиуса кривошипа или перемещением 

ползуна. К недостаткам образца [6] относят его низкую надежность, 

вследствии неравномерности вращения выходного вала при достижении 

входным валом крайних мертвых точек, что приводит к разрыву крутящего 

момента.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ГЛАВА 1. АНАЛИТИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ 

КИНЕМАТИЧЕСКИХ ПАРАМЕТРОВ РЫЧАЖНЫХ МЕХАНИЗМОВ, С 

ИСПОЛЬЗОВАНИЕМ ТЕОРЕМЫ ПИФАГОРА 

 

Рычажные механизмы используются  во всех типах машин применяемых 

в разных отраслях. Эти механизмы классифицируются методикой 

предложенной академиком Ш.И. Артоболевским [1] по классу механизмов. 

Предложенная классификация в основном предназначена для создания 

одноподвижных механизмов с использованием групп Ассура. Так например, 

начальные механизмы состоят только из двух звеньев, одно из которых 

неподвижная стойка, а вторая подвижная. При одном подвижном звене 

создаются только два варианта механизмов вращательными или 

поступательными движениями (см. рис. 1). 
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Рисунок 1 - Начальные механизмы с одним подвижным звеньем. 

В следующем этапе классификации И.И. Артоболевского создаются 

механизмы с наслаиванием группы Ассура к начальному механизму. В этом 

случае создаются 10 вариантов схем механизмов с тремя подвижными 

звеньями. (см. рис. 2). 



 

Рисунок 2. Схемы механизмов с тремя подвижными звеньями. 

В классификацию рычажных механизмов существенное развитие внес 

член-корр. АН Киргизской ССР Л.Т. Дворников который предложил в 

классификацию механизмов ввести понятие по количеству сложности 

присоединяемых звеньев τ [2].  Например при τ = 1 (рис 1),  звено соединяется 

только одним подвижным звеном, при τ = 2 (рис. 2) с звеном соединяются два 

звена, при τ = 3 три звена (см. рис. 1.3). На примере механизма приведенного 

рис. 3 второму звену  подвижно соединяются три звена 1, 3 и 4. 



 

Рисунок 3. Схема механизма с пятью подвижными звеньями с τ = 3. 

Л.Т. Дворниковым также предположена универсальная структурная 

формула рычажных звеньев с помощью которых можно расшифровать и 

описать любой механизм.  

С увеличением количества подвижных звеньев усложняется структура 

устройств с одной стороны, с другой стороны это усложнение легко 

компенсируются увеличением   технологических возможностей применения 

этих механизмов, которые удовлетворяют  специфическим технологическим  

требованиям машин. Например, увеличение жесткости в чеканочных прессах 

или выполнение других требований таких как,  ударные импульсные 

механизмы буровых автоматов которые автоматически переходят от режима 

вращательного бурения в ударно вращательный режим работы и т.д. 

Увеличением количества подвижных звеньев механизмы приобретают особые 

возможности по перемещению, по соотношению относительных скоростей и 

ускорений звеньев, по усилию и силовым возможностям механизмов. 

Таким образом, структурный синтез и определение кинематических 

параметров сложных структурных механизмов является актуальной задачей. 

Из известных механизмов наиболее изученными являются первый и 

второй классы  механизмов,  приведенные на рис 1 и 2. 

Устройство приведенной на рис. 4 называют механизмом третьего 

класса, созданной с использованием четырехзвенной группы Ассура (или 

группы Ассура второго класса). Другое название устройства это механизм, 

созданный с использованием группы Бурместера. По классификации Л.Т. 

Дворникова механизм с пятью подвижными звеньями с τ =3. Этот механизм 



имеет 5 подвижных звеньев, соответственно обладает широкой 

технологической возможностью использования и считается самой сложной 

задачей определения его кинематических параметров. 

 

 

Рисунок 4. Механизм третьего класса созданной с использование 

четырехзвенной группы Ассура (или группы Ассура второго класса, или 

группы Бурместера). 

 

В работе [1,2] для решения задачи по определению кинематических 

параметров используют сложный и трудоемкий метод «особых точек», в 

работе [3] используют аналитический метод в виде тригонометрического 

полинома. В работе [4] используя метод замкнутого контура Зиновьева, 

составлены четыре уравнения в которых присутствуют тригонометрические 

функции с пятью углами звеньев из которых четыре неизвестны. 

Все эти вышеуказанные методы являются сложными и решаются 

методом последовательного приближения, что увеличивает трудоемкость 

решения задачи, усложняет анализ соотношений длин звеньев. 



Нами предлагается методика определения кинематических параметров 

механизма с четырехзвенной группой Ассура или с группой Бурместера 

методом последовательного использования теоремы Пифагора. Схема 

механизма представлена на рисунке 1.4. 

Положение точки А первого (ведущего) звена механизма определяется 

координатами на соответствующих осях декартовой системы  

𝑋1 =  𝑙1 cos 𝜑1   (1) 

𝑌1 =  𝑙1 sin 𝜑1     (2) 

где: 𝑋1, 𝑌1- проекция точки А первого звена (ОА) на соответствующие оси,    

𝑙1-длина  звена 1. 

По теореме Пифагора длина второго звена определяется   

x2
2 + 𝑦2

2 = l2
2     (3) 

 где: 𝑋2, 𝑌2, 𝑙2- проекция точки В второго звена (АВ) на соответствующие 

оси,   𝑙2-длина  звена 2. 

Аналогичным образом, по теореме Пифагора определяются длина 

звеньев для 3,4,6 и 7 звеньев. 

x3
2 + 𝑦3

2 = l3
2                                      (4) 

 x4
2 + 𝑦4

2 = l4
2                                     (5) 

x6
2 + 𝑦6

2 = l6
2                                      (6) 

x7
2 + 𝑦7

2 = l7
2                                      (7) 

 

где: 𝑋3, 𝑌3, 𝑙3- проекции точки С, третьего звена (сторона ВС треугольника 

ВСD) на соответствующие оси,  𝑙3-длина  стороны ВС звена 3, 

𝑋4, 𝑌4, 𝑙4- проекции точки D третьего  звена (сторона ВD треугольника ВСD) 

на соответствующие оси,    𝑙4-длина  стороны ВД звена 3. 

𝑋6, 𝑌6, 𝑙6- проекции точки Е, звена СЕ на соответствующие оси,    𝑙6-длина  

звена 6 (длина звена СЕ). 

𝑋7, 𝑌7, 𝑙7- проекции точки F звена DF, на соответствующие оси,    𝑙7-длина  

звена 7. 



  Для удобства расчетов стороны  третьего звена треугольника ВСD 

(одного жесткого звена) условно названы:  сторона ВС третьим звеном 

длиной 𝑙3 , сторона ВD четвертым звеном длиной 𝑙4 и сторона СD пятым 

звеном длиной 𝑙5. 

По теореме Пифагора определяется координаты пятого звена СD 

(х4 − х3)2 + (у3 − у4) 2 =  l5
2            (8) 

где: 𝑙5-длина  звена 5. 

Как видно из рисунка 4 сумма проекции на координат на ось х 1, 2 и 7 

звеньев равна координате Х𝐹. 

 

𝑋1 + 𝑋2 + 𝑋4 + 𝑋7  =  𝑋𝐹                          (9) 

             Как видно из рисунка 4 сумма проекции на координат на ось у 1, 2, 3 

и 6 звеньев равна координате 𝑌𝐸 . 

𝑌1 + 𝑌2 + 𝑌3 + 𝑌6  =  𝑌Е           (10) 

 

Как видно из рисунка 4 сумма проекции на координат на ось х 1, 2, 3 и 

6 звеньев равна координате ХЕ. 

 

𝑋1 + 𝑋2 + 𝑋3 + 𝑋6  =  𝑋Е      (11) 

Как видно из рисунка 4 сумма проекции на координат на ось у 1, 2, 3 и 

6 звеньев равна координате ХЕ. 

𝑌1 + 𝑌2 + 𝑌4  =  𝑌7                    (12) 

 Координаты точки D стороны  СD определяются как разница  

𝑋4 − 𝑋3  =  𝑋5                          (13) 

𝑌3 − 𝑌4  =  𝑌5                            (14) 

Таким образом, при 12 неизвестных из которых 6 по оси х  

𝑋2, 𝑋3,𝑋4,𝑋5, 𝑋6, 𝑋7, и 6 по оси у 𝑌2,𝑌3,𝑌4,𝑌5, 𝑌6, 𝑌7  получили 12 уравнений 3, 4, 

5, 6, 7, 8, 9, 10, 11, 12, 13 и 14, что сделает систему уравнений статически 

определимой. В выше указанной системе уравнений отсутствуют 



тригонометрические функции, усложняющие расчеты определения 

кинематических параметров. 

 

Указанная система уравнений решается с использованием программы 

Матлаб, результаты которой представлены на рисунке 5. 

 

 

 

Рисунок 5- Положение звеньев механизма по результатам расчета с 

использованием программы MATLAB. 

Вывод к главе 1 

Предложена новая методика определения кинематических параметров 

самой сложной схемы рычажных механизмов, с использованием теоремы 

Пифагора, которая позволяет определить и выбрать оптимальные 

соотношения параметров звеньев механизмов третьего класса созданной с 

использованием четырехзвенной группы Ассура (или группы Ассура второго 

класса). 



ГЛАВА 2. ОПРЕДЕЛЕНИЯ КИНЕМАТИЧЕСКИХ ПАРАМЕТРОВ 

КРИВОШИПНО-ПОЛЗУННЫХ МЕХАНИЗМОВ С 

ИСПОЛЬЗОВАНИЕМ ТЕОРЕМЫ ПИФАГОРА       И ВЗАИМОСВЯЗИ 

ЗВЕНЬЕВ ЗАМКНУТЫХ КОНТУРОВ. 

По существующей известной классической методике ТММ, для 

определения кинематических параметров отдельной точки звеньев рычажных 

механизмов, требуется предварительно определить углы качания и угловой 

скорости этого звена, что усложняет решение задачи. По этой причине 

методики определения кинематических параметров точек звеньев рычажных 

механизмов остается актуальной задачей.  

Рассмотрим новую методики определения кинематических параметров 

кривошипно- ползунных механизмов с использованием теоремы Пифагора и 

взаимосвязи звеньев замкнутых контуров. Схема кривошипно-ползунного 

механизма представлена на рис.6. 

  

 

Рисунок 6 - Схема кривошипно-ползунного механизма 

 

где, A – кривошип, B – шатун, C – ползун, 𝑙1 – длина кривошипа, 𝑙2 – длина 

шатуна, Bx и By – координат точки B на осях x и y. 

По теореме Пифагора из треугольников 𝛥𝐴𝐵𝐵𝑋  и  𝛥𝐵𝑋𝐵𝐶 определяется 

𝑙1
2 = 𝑥1

2 + 𝑦1
2          (15) 

𝑙2
2 = 𝑥2

2 + (BBx)2   (16) 



С другой стороны координаты (значение) проекции на оси координат x и y 

точки B определяется 

 𝑥1 = 𝑙1cos𝜑1        (17) 

𝑦1 = 𝑙1sin𝜑1         (18) 

А также учтем, что  

𝑦1 = 𝐵𝐵𝑥          (19) 

Из уравнения (19) определяем  

𝑥2
2 = 𝑙2

2 − 𝑦1
2         (20) 

Из уравнения (20) определяется  

   𝑥2 = ±√𝑙2
2 − 𝑦1

2 = ±√𝑙2
2 − 𝑙1

2sin2𝜑1       (21) 

В реальных звеньях механизмов следует принимать знак (+) из рисунка (1) 

определяется координаты точки C 

𝑥𝑐 = 𝑥1 + 𝑥2           (22) 

В уравнении (22) подставляя формулы (17) и (21) получим: 

       𝑥𝑐 = 𝑙1cos𝜑1 + √𝑙2
2 − 𝑙1

2sin2𝜑1       (23) 

Рассмотрим дискриминант уравнения (18), который должен удовлетворить 

условие:  

𝑙2
2 − 𝑙1

2sin2𝜑1 ≥ 0      (24) 

𝑙2 ≥ 𝑙1sin𝜑1               (25) 

Максимальное значение функции равно sin𝜑1, при 𝜑1=П/2 sinП/2 = 1. Тогда 

из уравнения (16) получим: 

𝑙2 ≥ 𝑙1                        (26) 

Условие (23) поясняется рисунком 2. 

 

 



 

 

Рисунок 7- КПМ при равенстве кривошипа и шатуна 𝑙1 = 𝑙2 

 

 

 

Рисунок 7 - КПМ когда длина кривошипа больше чем шатун 𝑙1 > 𝑙2 

На рисунке 7 показано положение звеньев механизма при условии  𝑙1 =

𝑙2 и 𝜑1=П/2 (Рис.7а), механизм работоспособный, (Рис.2б) когда кривошип 

занимает положение 𝜑1=3П/2, механизм также работоспособен. 

На рисунках 3 а и б показаны условия, когда при 𝑙1 > 𝑙2 (Рис.3а) 

кривошип занимает положение 𝜑1=3П/2 и происходит разрыв связи шатуна 2 

и ползуна 3, что недопустимо из условия работы механизма. 

Определяем координаты точки М лежащей на шатуне между точками B 

и C. 

 



 

Рисунок 8 - Схема КПМ с точкой M расположенной на шатуне 

 

Координаты точки М известны и определяются по пропорции из соотношения 

действительного размера и чертежа. 

𝐵𝑀

B𝐶
=

𝑥3

𝑥2
            (27) 

С другой стороны 

𝑀𝐶

B𝐶
=

𝑦3

𝑦1
            (28) 

𝑥3 =
𝐵𝑀

𝐵𝐶
𝑥2       (29) 

𝑦3 =
𝑀𝐶

𝐵𝐶
𝑦1       (30) 

Отсюда определяем координаты точки М  

𝑥𝑀 = 𝑥1 + 𝑥3 = 𝑙1cos𝜑1 +
𝐵𝑀

𝐵𝐶
𝑥2     (31) 

𝑦𝑀 = 𝑦3 =
𝑀𝐶

𝐵𝐶
𝑦1          (32) 

Абсолютная координата точки М определяется 

 

   𝑃𝑀 = √𝑥𝑚
2 + 𝑦𝑚

2         (33) 

В уравнениях (32) и (33) поделив обе части уравнений на величину 𝑙2 введя 

коэффициент 𝜆 = 𝑙1/ 𝑙2 получаем безразмерную характеристику положений 

звеньев в зависимости от 𝜆. 

𝑥𝑀 = 𝑥𝑚𝑙2 =
𝑙1

𝑙2
cos𝜑1 +

𝐵𝑀

𝐵𝐶
√

𝑙2
2

𝑙2
2 −

𝑙1
2

𝑙2
2 sin2𝜑1       (34) 



Или 

𝑥𝑀 = 𝜆cos𝜑 +
𝐵𝑀

𝐵𝐶
√1 − 𝜆2sin2𝜑1      (35) 

𝑦𝑀 =
𝑀𝐶

𝐵𝐶
∗

𝑙1

𝑙2
𝑠𝑖𝑛𝜑1         (36) 

Или 

𝑦𝑀 =
𝑀𝐶

𝐵𝐶
∗ 𝜆𝑠𝑖𝑛𝜑1          (37) 

С учетом уравнений (35) и (36) уравнение (26) также преобразуется  

𝑃𝑀 =
𝑃𝑚

𝑙2
= √𝑥𝑚

2 + 𝑦𝑚
2    (38) 

𝑃𝑀 = √(𝜆cos𝜑1 +
𝐵𝑀

𝐵𝐶
√1 − 𝜆2sin2𝜑1)2 + (

𝐵𝑀

𝐵𝐶
𝜆sin𝜑1)2     (39) 

 

 2.1. Новая методика определения кинематических параметров 

рычажных механизмов с использованием теоремы Пифагора и 

взаимосвязи звеньев замкнутых контуров. 

 

 

Как известно машины осуществляют рабочие процессы 

преобразованием движения звеньев устройств, в подавляющее большинство 

которых составляют рычажные механизмы. 

 По известной методике определение кинематических  параметров 

звеньев осуществляется методам замкнутых контуров заменяя длины звеньев 

векторами, последующем определяя углы наклона звеньев относительно 

системе координат в которых присутствуют тригонометрические функции 

которые усложняют решения задачи. При решении отдельных задач для 

определения углов наклона звеньев используются обратные 

тригонометрические функции. 

 Так, например, определение кинематических параметров четырех 

шарнирного механизма схема которая приведена на рис.1 выполняются по 

вышеуказанной методике.  



 

Рисунок 9 - Кинематическая схема четырех шарнирного механизма. 

В работе Артоболевского И.И. и других [1,2] изложены методика определения 

угла наклона третьего звена которая имеет следующий вид: 
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 где, l1,  l2 ,  l3 , l4 – длины звеньев: первого кривошипа, второго шатуна, 

третьего коромысла и межопорного расстояния АД условно названого 

четвертым,  𝜑1,   𝜑2,  𝜑3,  - положение углов наклона соответствующих звеньев. 

Продифференцировав один раз уравнение (1), получаем угловую 

скорость коромысла как функцию от  размеров звеньев и угловой скорости 

кривошипа в явном виде 
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Продифференцировав еще раз уравнение (41), получаем угловое 

ускорение коромысла: 
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Для удобства вводим обозначения: 
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Тогда уравнение (1) примет вид: 
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Угловая скорость коромысла (41) с учетом обозначений определяется: 
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Угловое ускорение коромысла определяется: 
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 Аналогичным образом, определяется положение угла наклона второго 

звена -шатуна.  
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 Аналогичным образом, последовательна дифференцируя уравнение 46, 

можно получить угловую скорость и угловое ускорение второго звена. 

 Как видно из приведенного примера, известная классическая методика 

определения кинематических параметров рычажных механизмов сложна из-за 

того что включают обратные тригонометрические функции  и при 

определенных условиях вообще не дает решения. Так например определение 

скорости точки второго звена которая расположена за шарниром С, настолько 

громоздкие и сложные, для решения этой задачу многие исследователи 

предпочитают графоаналитический метод. Следующий недостаток известной 

методики по вышеуказанной методики- указанная формула 46 при особых 



положениях звеньев когда все три звена кривошип, шатун  и коромысла 

встраиваются в одну линию вообще решения не дают. 

По этой причине определение кинематических параметров – 

перемещение, скорости и ускорений точек звеньев является и остается 

актуальней задачей. 

 Предлагается новая методика определения кинематических параметров 

с использованием теоремы Пифагора. По предложенной методике 

определения кинематических параметров рычажных механизмов, для каждого 

звена записываются отдельное уравнение по теореме Пифагора со своими 

координатами по осям x и y, в виде: 

𝑙𝑖
2 = 𝑥𝑖

2 + 𝑦𝑖
2                                     (47) 

где, 𝑙𝑖 – длина i-го звена, 𝑥𝑖, 𝑦𝑖 -  проекция звена оси x и  y. 

 При таком записи увеличивается количества неизвестных. Вместе с тем 

поскольку рычажные механизмы с замкнутыми контурами являются 

статистически определимыми системами, возможно составление 

дополнительных уравнений по осям системы координат которые в сумме 

проекций звеньев равны друг другу или координате конечного звена 

∑ 𝑥𝑖 = 𝑥𝑗                                           (48) 

или 

∑ 𝑦𝑖 = 𝑦𝑗                                            (49) 

где,  i и j количеств звеньев. 

 Рассмотрим определение кинематичсеких параметров рычажных 

механизмов по новому методу на примере механизма представленного на 

рис.1. 

 Координаты точки В первого звена- кривошипа определяется: 

𝑥1 = −𝑙1 cos 𝜑1                          (50) 

𝑦1 = 𝑙1 cos 𝜑1                             (51) 

 С другой стороны по теореме Пифагора, можно записать: 

𝑙1
2 = 𝑥1

2 + 𝑦1
2                                (52) 



Аналогичным образом, по теореме Пифагора,  для второго и третьего 

звеньев можно записать: 

𝑙2
2 = 𝑥2

2 + 𝑦2
2                                   (53) 

𝑙3 = 𝑥3
2 + 𝑦3

2                                   (54) 

Как видно из рис.1  сумма проекций на оси х точки В первого звена х1,  

точки С второго звена х2  и точки С третьего звена х3 равна координате точки 

Д - хд.  

𝑥1 + 𝑥2 + 𝑥3 = 𝑥д                         (55) 

Как видно из рис.1  сумма проекций на оси у точки В первого звена у1 и  

точки С второго звена у2  равна координате точки С третьего звена у3.   

𝑦1 + 𝑦2 = 𝑦3                             (56) 

 Таким образом, нами получены система из семи уравнений 50, 51, 52, 

53, 54, 55 и 56,  при четырех неизвестных  х2, х3 и  у2, у3, что сделает систему 

статистически определимой.  

 Для решения систему уравнений и нахождения неизвестных уравнение 

(16) преобразуем и возведем в квадрат 

𝑥3 = 𝑥д − (𝑥1 + 𝑥2)                                                                   (57) 

𝑥3
2 = 𝑥д

2 − 2𝑥д(𝑥1 + 𝑥2) + 𝑥1
2 + 2𝑥1𝑥2 + 𝑥2

2                              (58) 

 Уравнение (56) также возведем в квадрат 

𝑦3
2 = 𝑦1

2 + 2𝑦1𝑦2 + 𝑦2
2                                                                 (59) 

 Уравнении (58) и (59) подставим в уравнение (54), что позволяет 

исключить из системы уравнений неизвестные х3 и у3. 

𝑙3
2 = 𝑥д

2 − 2𝑥д(𝑥1 + 𝑥2) + 𝑥1
2 + 2𝑥1𝑥2 + 𝑥2

2 + 𝑦1
2 + 2𝑦1𝑦2 + 𝑦2

2           (60) 

С учетом уравнений (13) и (14)  уравнение (21) преобразуется  

𝑙3
2 = 𝑥д

2 − 2𝑥д(𝑥1 + 𝑥2) + 𝑙1
2 + 2𝑥1𝑥2 + 𝑙2

2 + 2𝑦1𝑦2                          (61) 

или 

2𝑦1𝑦2 − 2𝑥д(𝑥1 + 𝑥2) + 2𝑥1𝑥2 = 𝑙3
2 − 𝑙1

2 − 𝑙2
2 − 𝑥д

2                      (62) 

Находим 𝑦2  

2𝑦1𝑦2 = 𝑙3
2 − 𝑙1

2 − 𝑙2
2 − 𝑥д

2 + 2𝑥д(𝑥1 + 𝑥2) − 2𝑥1𝑥2                    (63) 



𝑦2 =
𝑙3

2−𝑙1
2−𝑙2

2−𝑥д
2+2𝑥д(𝑥1+𝑥2 )−2𝑥1𝑥2

2𝑦1
                   (64)              

Введем обозначения 

  𝑙3
2 − 𝑙1

2 − 𝑙2
2 − 𝑥д

2 + 2𝑥д𝑥1 = Е                                              (65) 

𝑦2 =
Е+2𝑥д𝑥2−2𝑥1𝑥2

2𝑦1
=

Е+2(𝑥д−𝑥1)𝑥2

2𝑦1
              (66) 

Возведем в квадрат уравнение (66) 

𝑦2
2 =

Е2+4Е𝑥2(𝑥д−𝑥1)+4(𝑥д
2−2𝑥д𝑥1+𝑥1

2)𝑥2
2

4𝑦1
2                     (67) 

Уравнение (67) подставляем в уравнению (53) 

𝑙2
2 = х2

2 +
Е2+4Е𝑥2(𝑥д−𝑥1)+4(𝑥д

2−2𝑥д𝑥1+𝑥1
2)𝑥2

2

4𝑦1
2              (68) 

Преобразуем уравнение (68) 

4𝑙2
2𝑦1

2 = 4𝑦1
2𝑥2

2 + Е2 + 4Е𝑥2(𝑥д − 𝑥1) + 4(𝑥д
2 − 2𝑥д𝑥1 + 𝑥1

2)𝑥2
2            

(69) 

Или  

4(𝑦1
2 + 𝑥д

2 − 2𝑥д𝑥1 + 𝑥1
2)𝑥2

2 + 4Е(𝑥д − 𝑥1)𝑥2 + Е2 − 4𝑙2
2𝑦1

2 = 0      (70)  

Уравнение (70) с учетом уравнения (52) преобразуется  

4(𝑙1
2 + 𝑥𝐷

2 − 2𝑥1𝑥𝐷)𝑥2
2 + 4𝐸(𝑥𝐷 − 𝑥1)𝑥2 + 𝐸2 − 4𝑙2

2𝑦1
2 = 0                 (71) 

Введем обозначения 

4(𝑙1
2 + 𝑥𝐷

2 − 2𝑥1𝑥𝐷) = А                                                     (72) 

4𝐸(𝑥𝐷 − 𝑥1) = В                                                               (73) 

𝐸2 − 4𝑙2
2𝑦1

2 = С                                                                  (74) 

С учетом уравнений (72), (73) и (74) уравнение  (71) преобразуется  

А𝑥2
2 + В𝑥2 + С = 0                                                     (75) 

Определяем 𝑥2 

𝑥2 =
−В±√В2−4АС

2А
                                                (76)   

В уравнении (76) в обозначениях А, В, С и Е входят известные 

параметры 𝐿1, 𝐿2, 𝐿3 и 𝐿4 которая равна координату 𝑋д, а значение 𝑋1 и 𝑌1 

вычисляются по формуле 11 и 12.  



По известному значению 𝑋2 по формуле (57) определяется значение 𝑋3, 

а по формуле (56) 𝑌3. 

Таким образом после определения неизвестных очень легко 

определяется координаты любой точки. 

 Координата точки Д определяется  

ХД = х1 + х2                                                                (77) 

УД = УЗ                                                                         (78) 

 Абсолютное значение координаты точки Д определяется: 

𝜌д = √ХД
2 + УД

2                                                                  (79) 

Аналогичным образом можно определить координаты любой точки М 

которая лежит на продолжении звена 2 см. рис. 9.   

Поскольку точка М лежит в продолжении звена 2 (ВС) воспользуемся 

известной пропорциональностью  

𝑙2

𝑥2
=

𝑙2±∆𝑙м

𝑥2±∆𝑥м
                                                (80) 

Знак + означает, что точка М расположена за отрезком ВС, минус до 

точки С или внутри отрезка ВС. Преобразуя уравнение (81) имеем  

𝑙2(𝑥2 ± ∆𝑥2) = 𝑥2(𝑙2 ± ∆𝑙2)                           (82) 

𝑙2𝑥2 ± 𝑙2∆𝑥2 = 𝑙2𝑥2 ± 𝑥2∆𝑙2                                  (83) 

𝑙2∆𝑥2 = 𝑥2∆𝑙2                                                         (84) 

∆𝑥2 =
𝑥2

𝑙2
∆𝑙2                                               (85) 

 Тогда координата точки М определяется: 

𝑋𝑀 = 𝑥1 + 𝑥2 ± ∆𝑥2 

𝑌𝑀 = 𝑦1 + 𝑦2 ± ∆𝑦2 

В уравнениях (51), (52),  (56), (57), (65) и (76) в которых определяются 

значении Х1, У1, Х2, У2,   Х3 и У3  дифференцируя их находим скорости 

соответствующих точек 

𝑥̇1 = −𝑙1 sin 𝜑1 ∙ 𝜑̇1 

𝑦̇1 = 𝑙1 cos 𝜑1 ∙ 𝜑̇1 



Абсолютная скорость точки В определяются как 

𝜗в = √𝑥̇1
2 + 𝑦̇1

2  

Аналогичным образом можно определить скорость любой точки.  

Эти же уравнении дифференцируя еще раз определяется ускорение 

соответствующих точек. 

Вывод к главе 2 

Предложена новая методика определения кинематических параметров 

рычажных механизмов, которая исключает использование сложных 

тригонометрических функции, которая приведена на примере определения 

кинематических параметров кривошипно-ползунного механизма. Для 

определения положение звеньев механизма составляются система уравнений 

с использованием теоремы Пифагора, и используются взаимосвязь 

замкнутых контуров. 

Использование двух методов для определения кинематических 

параметров звеньев увеличивает возможности анализа соотношений звеньев, 

для выбора оптимальных параметров. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ГЛАВА 3. СТРУКТУРНЫЙ И КИНЕМАТИЧЕСКИЙ АНАЛИЗ 

РЫЧАЖНОГО ВАРИАТОРА С ПРОСТРАНСТВЕННЫМИ 

ПРЕОБРАЗУЮЩИМИ МЕХАНИЗМАМИ 

 

В этом главе описаны схема и принцип работы рычажного вариатора с 

пространственными преобразующими механизмами. В результате 

структурного анализа, определено семейство исследуемого вариатора, 

показано, что применение сферических кинематических пар оказывается 

предпочтительнее для надежности работы устройства. Предложена 

математическая модель кинематики рычажного вариатора с двумя 

преобразующими механизмами, и построены диаграммы изменения 

передаточного отношения в зависимости от угла поворота входного 

кривошипа и положения камня на неподвижной кулисе.  

 

3.1. Устройство и принцип работы рычажного вариатора 

В рычажном вариаторе (рис. 10, а) направляющая ползуна 3 

пространственного механизма установлена с эксцентриситетом e , равным 

длине кривошипа, el =
1

. Второй конец ползуна 3 соединен с ведомым 

кривошипом 4 с возможностью поступательного перемещения в осевом 

направлении. К кривошипно-ползунному механизму присоединен 

преобразующий механизм, состоящих из двух одинаковых по длине 

коромысел 5 и 5', вспомогательных шатунов 6 и 6', камня 7 и МСХ 8. 

Коромысла 5 и 5' подвижно установлены в средней части ползуна 3, а также 

дополнительно соединены с ползуном 3 с помощью МСХ 8. Камень 7 



перемещается по направляющей стойки 0, которая выполнена в виде дуги с 

радиусами, равными длине вспомогательных шатунов 6 и 6', 
6
lR = . Для 

избегания заклинивания звеньев коромысла 5 и 5' установлены под углами 

наклона   (рис. 10, б). 

Для уменьшения неравномерности вращения ведомого вала установлены 

два преобразующих механизмов, как показано на рис. 10, в. 

 

а)                                                                                                б) 

 

в) 

Рисунок 10 Структурная схема рычажного вариатора: 1 – кривошип; 2 – 

шатун; 3 – ползун; 4 – ведомый кривошип; 5 – коромысло; 6 – 

вспомогательный шатун; 7 – камен; 8 – механизм свободного хода. 



При вращении входного звена 1 ведомое коромысло 5 получает движение 

посредством шатуна 2 и ползуна 3 (рис. 10). При поступательном движении 

ползуна 3, коромысла 5 и 5' начинают перемещаться в противоположные друг 

от друга стороны на одинаковые углы 
5

  и 
5

  соответственно (рис. 10, а и б). 

При повороте кривошипа 1 на угол (0180)0 ползун 3 и ведомый кривошип 4 

движутся со направлено с коромыслом 5 на угол 
5

 . На интервале (0180)0 

поворота звена 1  коромысло 5  вращается в обратную сторону, но благодаря 

МСХ 8 не препятствует вращению ползуна 3 и соответственно ведомого 

кривошипа 4. При повороте кривошипа 1 на угол (180360)0 ползун 3 и 

ведомый кривошип 4 поворачиваются совместно с коромыслом 5  на угол 
5

  

по направлению вращения кривошипа 1. В этом случае коромысло 5 

вращается в обратную сторону, так как благодаря МСХ 8 разъединяется  и не 

препятствует вращению ползуна 3 и соответственно ведомого кривошипа 4. 

При использовании двух преобразующих механизмов (рис. 10, в) в схеме 

рычажного вариатора в процессе поворота  кривошипа 1 на угол (0180)0 

вращение ползуна 3 и соответственно ведомого кривошипа 4 обеспечивается 

одним из двух коромысел 5 или 15 , имеющих большую угловую скорость. А 

при повороте кривошипа 1 на угол (180360)0 вращение ведомого кривошипа 

4 реализуется коромыслом 5' или 15 , в зависимости от соотношения их 

угловых скоростей. 

Синхронное перемещение камней 7 и 7' по дугообразным направляющим 

позволяет изменить угол качания коромысел 
5

  и 
5

  и соответственно 



скорректировать угловую скорость ведомого кривошипа 
4

 , т.е. изменить 

передаточное отношение устройства.  

 

Структурный анализ рычажного вариатора направлен на оценку 

семейства, местных подвижностей и избыточных связей [10, 11].  Выполним 

замену высших кинематических пар рычажного вариатора (рис.10) на пары 

пятого класса 
5р , чтобы получить замещающий механизм (рис.11) 

эквивалентный исходному в структурном, кинематическом и силовом 

отношении. 

Степень подвижности механизма (рис. 11) без учета ведомого кривошипа 

4 равна единицы, т.е. 
56 5 6 11 5 13 1W n p= − =  −  = , иначе 2W = . Таким образом, 

исследуемый вариатор относится без учета ведомого кривошипа 4 к категории 

пространственных, в противном случае – к смешанной, когда выходное звено 

может совершать движение только в одном направлении. 

 

Рисунок 11. Структурная схема замещающего рычажного вариатора с 

кинематическими парами пятого класса: 1 – кривошип; 2 – шатун; 3 –ползун; 

4 – ведомый кривошип; 5 – коромысло; 6 – вспомогательный шатун; 7 – 



камень; 8 – механизм свободного хода; 9, 10, 11, 12, – стержни; 13, 14- 

толкатели. 

Структурная схема замещающего механизма рычажного вариатора (рис. 

2) состоит из входного кривошипа 1, трех групп Ассура нулевого семейства  

( )0m =  и ведомого кривошипа 4. В каждой группе Ассура по одной 

кинематической паре третьего класса 3р  можно заменить на сферическую с 

пальцем 
4р , что не повлечет изменение степени подвижности механизма, но 

приведет к ухудшению показателей надежности из-за возможных деформаций 

в процессе эксплуатации и снижению ремонтопригодности. Следует также 

отметить, что более целесообразно использовать в качестве выходного 

ползуна  3 цилиндрическую кинематическую пару. 

 

3.2. Кинематический расчет рычажного вариатора 

Ранее кинематика четырехзвенного пространственного механизма 

аналогичного рассматриваемому преобразующему механизму в рычажном 

вариаторе (рис. 12)  исследовалась в работах [13, 14]. На основе полученной 

авторами зависимости, запишем перемещение ползуна 3,  как функцию угла 

1  вращения кривошипа 1: 

11
22

1
2
21

22
1

2
23

cos22 +−−+−− −= еlеllеlеllS ,               (86) 

где 1l  - длина входного звена 1, 2l  - длина шатуна 2, е  - эксцентриситет.  



На рис. 12 для нахождения зависимости ( )5 1   представлена расчетная 

схема кинематики рычажного вариатора при некоторых значениях: угла 

качения    коромысла 5, положения камня 7 и ползуна 3. 

 

Рисунок 12. Расчетная схема кинематики звеньев рычажного вариатора 

 



На рис. 12, а изображено направление осей неподвижной декартовой 

системы координат XYZ, на рис. 13, б – проекция коромысла ОА, качающегося 

относительно ползуна 3.    

Вычислим  расстояние 0A B , как функцию угла   поворота кривошипа 5 

(рис. 13, б) по известным теоремам Пифагора и косинусов: 

( ) ( ) ( )cos12
5
22

6
2

0
2

0
−−=−= llAAABBA ,                             (87) 

где  ( ) ( ) ( )cos12
5

22
00

−=+= lAAAAAA . 

При перемещении камня 7 по дугообразной направляющей в 

вертикальном направлении на расстояние у  длина отрезка ВА
0

 уменьшится 

на величину 
1
S  (рис. 13, а). Принимая отрезок 

1
АВ  за диагональ 

параллелепипеда АAВВ 
11

, найдем длину отрезка 
1011
BAВВ = : 

( ) ( ) ( ) ( )2
1

cos
5

2sin2
5

2
6

2
1

22
110

ylllBAAAABBA −−−=−−=  .        (88) 

Тогда отрезок 
1
S  определим как: 

( ) ( )2
1

cos
5

2sin2
5

2
6

cos12
5
22

61001
ylllllBABAS −−−−−−=−=  .    (89) 

Для прямоугольного треугольника 
111

АВВ   по теореме Пифагора запишем 

выражение для расчета 
1 1

А B : 

( ) ( ) ( )2
111

2
6

2
11

2
1111

yAOlBBBABА −−=−= .                                (90) 

В прямоугольном треугольнике 
111
AAB   по теореме Пифагора найдем 

длину отрезка 
11
BА  : 



( ) ( )2
11

2
31011

AASBABА +−= . 

Подставив ранее полученное выражение (88) для расчета расстояния
0 1
A B

, получим: 

( ) ( )2
11

2
5

2

3
2
1

cos
5

2sin2
5

2
611

AOlSylllBА −+







−−−−=  ,                         (91) 

где из 
111
AAO  отрезок равен ( )2

11
2
511

AOlАА −= . 

Из тождества уравнений (5) и (6) находим длину отрезка 
11
AO  : 

( ) ( ) ( )2
11

2
5

2

3
2
1

cos
5

2sin2
5

2
6

2
111

2
6

AOlSylllyAOl −+







−−−−=−−  , 

( )

1
2

2
1

2
6

2
5

2

3
2
1

cos
5

2sin2
5

2
6

11 y

yllSylll

AO

+−+







−−−−

=



.                   (92) 

Из рисунка 13, б текущее значение угла поворота коромысла 5 с учетом 

первоначального отклонения   определим из прямоугольного треугольника 

111
AAO  : 

( )
11

11
5

cos
AO

AO 
=+ . 

Подставив формулу (7) и используя обратную тригонометрическую 

функцию, оценим движение коромысла 5:  

( )




 −




















+−+








−−−−

=

15
2

2
1

2
6

2
5

2

3
2
1

cos
5

2sin2
5

2
6

arccos
5 yl

yllSylll

.     (93) 



Определим границы диапазона регулирования положения камня 7 (рис. 

13) для рассматриваемого рычажного вариатора. Минимальное вертикальное 

перемещение  
miny   звена 7 соответствует повороту кривошипа 1 на угол 180  

(при этом ползун 3 перемещается на 
max3

S ), угол поворота коромысла 5 равен 

180
5
=+  (рис. 3.3). Таким образом, составим уравнение замыкания: 

0
0 2min min 3max min
A B A B S S

x
− − − = , 

где ( ) ( ) ( )2
min5

2
6

2
minmin

2
minmin2minmin2

yllBBBABA +−=−= ; при повороте 

входного кривошипа 1 на угол  180
1
= , в соответствии с уравнением (1) и 

равенством 1l e= , максимальный ход ползуна составит 2
1
42

22max3
lllS −−= . 

Подставив найденные выражения для всех составляющих в уравнение 

замыкания получим:  

( ) ( ) 02
min

cos
5

2sin2
5

2
6

2
1
42

22
2

min5
2
6

=−−−+−+−+−− yllllllyll  ,     (94) 

Выполним алгебраические преобразования формулы (9), так чтобы 

записать  квадратное уравнение относительно неизвестного 
miny : 

( ) ( )
22

22 2 2 2 2 2cos 1 4 4 1 cos
5 2 2 1minmin 5 2 2 1

2
2 242 2 2 12 2 2 24 0.

2 2 1 5 64

y l l l l y l l l l

l l l

l l l l l

 
 

    + + − − + − − − +  
    
 

 
  − − 

    + − − + − =   
 

 
 
 

     (95) 

Решив уравнение (95), сформируем условие, исключающее заклинивание 

звеньев при повороте коромысла 5 на угол 180 : 



( )

( )

2 2 2 24 4 1 cos '
2 2 1 5 2 2 1

,
min 2

22 2 22 cos 1 4
5 2 2 1

l l l l l l l l

y

l l l l





    
− − − − − − +    

    
 

  + + − − 
  
 

   (96) 

( ) ( )

2
2 242 2 2 2 12 22 2 2 2 2 2 2 2' 4 1 cos 4 cos 1 4

5 2 2 1 5 2 2 1 5 64

l l l

l l l l l l l l l l l 

 
  − −   

       = − − − − + + − − + −            
 
 

 

В рычажном вариаторе максимальное перемещение камня в 

вертикальном направлении 
max
y  получаем также при повороте входного 

кривошипа 1 на угол 180 , ползун 3 при этом находится в крайнем положении 

max3
S . Коромысло 5 вернется в исходную позицию, т.е. 0

5
 =  (рис. 3.3). 

Уравнение замыкания для рассматриваемых условий запишется следующим 

образом: 

0
maxmax3max2max0

=−−−
x
SSABBA , 

где ( ) ( ) ( )
2 2 2

max 2max max 2max 2max 2max max max
B A B A A A B B   = − −  или после 

подстановки обозначений кинематических размеров механизма 

( )
22 2 2sin cos

max 2max 6 5 max 5
B A l l y l   = − − − . 

Используя ранее рассчитанные выражения, уравнение замыкания для 

второго крайнего положения камня 7 примет вид: 

( ) ( ) 02
max

cos
5

2sin2
5

2
6

2
1
42

22
2cos

5max
2sin2

5
2
6

=−−−+−+−−−−− ylllllllyll  ,  

(12) 



Упростив уравнение (12), получим квадратное уравнение относительно 

неизвестного maxy : 

0
4

2
2
1
42

222
5

2
6

cosmax5
22

max
=









−−

−−++−

lll

llyly  ,                       (97) 

далее определяем предельно допустимые значения максимального 

перемещения кулисы 3: 

4

2
2
1
42

222
6

12cos2
5

cos
5max









−−

−+




 −=

lll

llly  .                    (98) 

 

3.3. Анализ результатов кинематического расчета рычажного 

вариатора 

При проведении численного эксперимента приняты следующие значения 

кинематических параметров исследуемого рычажного вариатора:  ммl 20
1
= , 

ммl 100
2
= , ммe 20= , ммl 60

5
= , ммl 200

6
=  и 20= .  

В соответствии с уравнениями (95) и (98) рассчитаны предельные 

значения  перемещения камня в вертикальном направлении: 

min 13,63832y мм  и  
max 255,282y мм= . 

Для заданного положения камня 13,6384y мм=  по формуле (87) построен 

график (рис. 14) зависимости передаточного отношения 1

5

U



 = 
 

 от угла 

поворота кривошипа для двух вариантов исполнения рычажного вариатора: с 



одним пространственным преобразующим механизмом (рис. 14, а) и с двумя 

симметричным преобразующими механизмами (рис. 14, в). 

   

а)                                                                              б) 

Рисунок 14. Графики изменения передаточных отношений рычажного 

вариатора в зависимости от угла поворота кривошипа: а – с одним 

преобразующим механизмом; б – с двумя преобразующими механизмами. 

 

Коэффициент неравномерности вращения ведомого кривошипа   

определяем по формуле [12]: 

( )

minmax

minmax
2

UU

UU

ср
U

U

+

−
=


= ,                                           (99) 

где 
minmax UUU −= ,  

2

minmax
UU

срU
+

= . 

В соответствии с формулой (99) для исследуемых рычажных вариаторов 

построены графики (рис. 15) зависимости коэффициента неравномерности 

вращения ведомого кривошипа   от перемещения камня по направляющей y

. 



  

а)                                       б) 

Рисунок 1 5. График изменения коэффициента неравномерности 

вращения ведомого кривошипа рычажного вариатора   в зависимости от 

перемещения камня по направляющим y : а – с одним преобразующим 

механизмом; б – с двумя преобразующими механизмами. 

 

Из рисунков 14 и 15 следует, что при использовании в схеме рычажного 

вариатора одного преобразующего механизма коэффициент неравномерности 

вращения ведомого кривошипа   имеет значения практически на два порядка 

больше, что негативно влияет на динамику устройства. Для вариатора с двумя 

преобразующими  механизмами на рисунке 6 построена диаграмма изменения 

среднего передаточного отношения в зависимости от перемещения камня в 

вертикальном направлении y . 



 

Рисунок 1 6. График изменения среднего передаточного отношения 

рычажного вариатора с двумя преобразующими механизмами в зависимости 

от перемещения камня по направляющим 

Согласно данным, представленным на рисунке 16,  зависимость среднего 

передаточного отношения 
ср
U  в рассматриваемом рычажном вариаторе от 

положения камня носит экспоненциальный характер.  Область допустимых 

значений исследуемого параметра лежит в диапазоне 92,22331818,1 = срU . 

Вывод к главе 3 

На основе анализа конструкций современных вариаторов скоростей, 

показана актуальность использования рычажных схем, которые обладают 

повышенными показателями надежности благодаря отсутствию фрикционной 

передачи. Модель исследуемого плоского рычажного вариатора с 

пространственными преобразующими элементами более компактная, что 

важно при размещении в ограниченном пространстве.  

Предложенная модель кинематического анализа позволила оценить 

предельные значения положений камня, соответствующие крайним 

положениям входного кривошипа и выходного ползуна. Результаты 

численного эксперимента доказали, что два симметричных преобразующих. 

 



ЗАКЛЮЧЕНИЕ 

Предложена новая методика определения кинематических параметров 

самой сложной схемы рычажных механизмов, с использованием теоремы 

Пифагора, которая позволяет определить и выбрать оптимальные 

соотношения параметров звеньев механизмов третьего класса созданной с 

использованием четырехзвенной группы Ассура (или группы Ассура второго 

класса). 

Предложена новая методика определения кинематических параметров 

рычажных механизмов, которая исключает использование сложных 

тригонометрических функции, которая приведена на примере определения 

кинематических параметров кривошипно-ползунного механизма. Для 

определения положение звеньев механизма составляются система уравнений 

с использованием теоремы Пифагора, и используются взаимосвязь 

замкнутых контуров. 

Использование двух методов для определения кинематических 

параметров звеньев увеличивает возможности анализа соотношений звеньев, 

для выбора оптимальных параметров. 

На основе анализа конструкций современных вариаторов скоростей, 

показана актуальность использования рычажных схем, которые обладают 

повышенными показателями надежности благодаря отсутствию фрикционной 

передачи. Модель исследуемого плоского рычажного вариатора с 

пространственными преобразующими элементами более компактная, что 

важно при размещении в ограниченном пространстве.  

Предложенная модель кинематического анализа позволила оценить 

предельные значения положений камня, соответствующие крайним 

положениям входного кривошипа и выходного ползуна. Результаты 

численного эксперимента доказали, что два симметричных преобразующих. 
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